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~ i Viscosity

2.1 Introduction

QIP two parallel layers of a liquid are moving with different
velodrttes, they experience tangential forces which tend to retard  the
faster layer and accelerate the slower layer. These forces are called
forces of viscosity)Consider two layers
of liquid separatdd by a distance oz
(Fig. 2.1). Let » and v+dv be the
velocities  of two layers. So the
velocity gradient is do/ds;. Let A be
the surface area of the layer. The
viscous force is directly proportional to
the surface area A and velocity gradient dv/dz

. dv dv
ie., Fe<A==or F = — (1
2 nA - (D
Where 1 is a constant for the liquid and called coefficient of viscosity.
If_"il and dv/dz = 1, we have F=m.
The coefficient of viscosity is defined as the tangential force per unit
area required to maintain a unit velocity gradient.

V+dv
=,

Fig. 2.1

Unit of 1 is Nsm™ It is called the pascal second.
Nl

s . [F] " MLT? _
" Dimensions of ] = m = m =ML 71!

?@r\Streamline Flow and Turbulent Flow

Consider a liquid flowing in a
pipe. Let the velocity of flow be v, at
A, vy at Band vy at C (Fig. 2.2). If as

<7 ) time passes, the velocities at A, B, and
. C are constant in magnitude and
Fig. 2.2 direction, then the flow is said to be

steady. In a steady flow, each particle

follows exactly the same path an
predecessor. In such a case, the
streamline flow.

— ECAC

d has exactly the same velocity as its
liquid is said to have an orderly or
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The line ABC is called a stream-line, which is the path fo.llowcd by
an orderly procession ot particles. The l.'mgenl-to the streamline at any
point gives the velocity of the liquid at that point. -

The flow is steady or streamlined only as long as the 've.lncrly of fhc
liquid does not exceed a limiting value, called thg rfm.ml VelDL‘-lfy.
thngl_’lc external pressure causing the ﬂow of thc' liquid is cx;cssntvhc‘;

. the motion of the liquid takes place with a velocity grcmcr[t anThis

critical velocity and the motion bccnmcs unsrcady qr lurb'u en >t .t

causes eddies and whirlpools in the motion of the liquid. This turbulen

otion is also known as vortex motion.

- The distinction between stream-line flow and lurl?ulenl ﬂov.v can:fb;

demonstrated by injecting a jet of ink axially in a wider ’lub‘c in wm:l:l

water is made to flow axially. When the velocity of the hqgld‘ls saSCd.

the ink will move in a straight line. As the speed of flow is mt;:: i

beyond the critical velocity, the ink will spread out, showing

motion has become turbulent. .

_~ Definition of critical velocity( Critical veloc-ily of a ltqulj l-\‘bove
/velocity below which the motion of the liquid is orderly and a 2

which the motion of the liquid becomes turbulent.) )

Expression for the critical velocity. Th.e crz:lical velo;tty_dOJ('nt;

liquid may depend upon (i) the coefﬁcicnt.gf VlSCOSll).’ of thef l:};:f L

(if) the density of the liquid (p) and (iii) thc? radius r o

through which the liquid is flowing. We may write —~

v, = knapbrc

the

\/ where k is constant called Reynolds’ number.

Writing the dimensions of these quantities,
[LT7) = (ML 77" )° (ML) (L)
[LT—I ]= [Ma+bL-a—3b+c T—a]
a+b =0;-a-3b+c=1 and —a = -1

From these equations we have, a = 1,b = —1 and ¢ = —1.
k.m ~
vL_=Pr Q(_*\\’)//\'
Significance of Reynold’s number : s a4t -
20 gz ZPT 2 =
n

The significance of the Reynold’s number k is that its value
determines the nature of flow of a liquid through a tube. In tRe case of
apparatus, geometrically similar, whatever their actual dimensions,
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turbulence sets in at the same constant value of Reynold's number
in all cases of liquid flow. The flow will be steady and stream-lipe
in cach individual case, until this number is not exceeded. After
cxcccding. this number, the flow becomes turbulent, Eventhough the
values of r,p and 1 may all vary from each other, but so long as £
remains the same, the liquid-flow will be similar in all the cases.

2.3. Poiseuille’s formula for the flow of a liquid through a capillary

@

Fig. 2.3(a) Fig. 2.3(h)

- Suppose a constant pressure difference p is maintained between the
two ends of the capillary tube of length { and radius_g._as shown in Fig.

o . —_= W ol
2.3 (a). Consider the steady flow of T Tiquid of coefficient of viscosity
@_xh[qugh the tube. The velocity of the liquid is a maximum along the
axis and is zero at the walls of the tube. Assume that there is no radial
., flow. Consider a cylindrical shell of the liquid co-axial with the tube of

2\

’ "' iwr and oyter radius r+ dr [Fig. 2.3(b)]. Let the velocity of

¥ lhcdiqgid on the inpec.syrface of the shell be.o and that on the outer

¢ . S = :
Do surfice_be v —\qg. (dv/dr) is the velocity gradient.

[

b
.

" The surfacé area of the shell = A = 27,/

3 Acc:)rding to Newton's law of viscous flow, the backward draggine
(an@:‘n@# force exerted by the outer layer on the inner ayer, opposite to
the drrdction of motion

- do dv
Fy=_ e L
.,— gf}d’_ nzn'rl ar
The driving force on the liquid_shell, accelerating it forward

Fy =pns
where p = pressure difference across the two ends of the tube and
= Area of cross-section.of the inner cykinder. -
When the motion is steady,
backward dragging force (Fy) = The driving force (F;)

® 90 _ a2 =P
_n2nr‘ldr—p1§r ordp—znlrdr.

S
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Integrating, = T]/ E.'+ C,

where C is a constant of integration,

pd*

2
~P a =z —
When PS4 0. H'cncc, 0= i 17+C or C = ani

4
v =4/T]I ((12--"r2 ).
This gives us the average velocity of the liquid flowing through the
cylindrical shell.
’ is shell
Hence the volume of the liquid that flows out per second through this s

1V = Area of crass—section of the shell XVelocityof
ay = of radius r and thickness dr flow

mp 2
o2y = = atr-r)dr
ani (o) =g ¢ _
1 The volume of the liquid that flows out per second is obtained by
integrating-the expression for dV between the limits r = 0 to 7 = a.

a 5 4 F
TP 2 4 P | ar I o
V=6f-2—n[(ar—r)dr—2n[ az 4 .

)
=Znrdr -
4
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2.4. Corrections to Poiseuille’s formula "
Two important corrections are to be applied in the Poiseuille's equation.
‘ (i) Correction for pressuré head : The outgoing liquid acquires
K.E. due to its velocity after passing through the tube. Hence the
pressure-head maintained is utilized not only for overcoming viscous
J resistance but also in imparting considerable K.E. to emergent liquid. So
| the effective pressure is less and is given by
) : Vp
’ Pr=p i

This can be deduced as follows :
The KiE' given to the liquid of density p per second
g W
VAL . : g
=2 E = f;(in'r_ drup)v? = np f roddr,
0 . : = 0
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The work done in overcoming viscosity is p,V whereas total work
done per unit volume is PV. Here p, is the effective pressure.

",
PV =pV+=—
cwRifl n’at

V2 B L
n’a* [

oYl 4
h——— g v
* [ a’ J 3t M ey Voub g
Th L AR I 7
us [V./(n a'g)] is the correctién factor to the pressure head for gain
of kinetic energy by the emergent liquid.
(D)) Corll'ect'iot_l for length of tube: At the inlet end of the tube, the
flow of the liquid is not stream-line for some distance. Consequently the

liquid is accelerated. The effective length of the tube is thus increased -
,_‘@,)TJ_ to /+1.64 a. Thus, the corrected relation for 1 becomes

PP . SR
BV(I+1.64a) | " 2%, |8P

2.5. Poiseuille’s method for determining coefficient of viscosity
of a liquid.
- The liquid is taken in the
liquid constant level tank upto a
height h (Fig. 24). A
capillary tube AB is fixed to
the bottom of the tank. A
weighed beaker is- placed
below the free end B of the
capillary tube. The mass m of
the liquid collected in it in
time ¢ is found out.

or Py =p-
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Volume of liquid flowing per second = V = m /(p.t) where p is
the density of the liquid. The length ! of the capillary tube is .mcasured
by a metre rod. The radius a of the capillary tube is dclermnrcd very
accurately, using the travelling microscope. Then from the relation
n pa* _
VI (wherep = hpg), e :
the value of 7 for the liquid can be easily calculated. )
Coniparison of viscosities : The liquid whose viscosity is 'n,. is first
used in the constant level tank and the volume of liquid flowing per
second = V; = m; /p, .t is determined with a capillary tube. The tube
is then taken out and cleaned well. The experiment is rcPeatcd _for the
other liquid whose viscosity is 1, and the volume of liquid flowing per
second = V, = m, /p, .t is determined for the same pressure .head a-nd
with the same capillary tube. If [ is the length of the tube, a its radius

and p; and p, the densities of the two liquids, L T hi
nhpga - nhpga' mo_ Y2 —
M Tgvr MM T T T w T e

p, /p, can be determined with a Hare's apparatus. Thus the viscosities

of two liquids can be compared. 7 17 \htorm LN

2.6 Ostwald’s Viscometer o
This instrument is used to compare the viscosities of two liquid )
is also used to study the variation of viscosity of a liquid with

s. It

temperature.

The apparatus consists of two glass bulbs A and B joined by a
capillary tube DE bent into a U-form (Fig. 2.5). The bulb A is
connected to a funnel F. The bulb B is
connected to an exhaust pump through a
stop-cock S. K, L, and M are fixed marks, as—
shown in figure. The whole apparatus is
placed inside a constant temperature bath.

The liquid is then introduced into the
apparatus through the funnel and its volume 'is
adjusted, so that the liquid occupies the portion
between the marks K and M, when the
stop-cock is closed. The stop-cock is now
opened and with the help of the exhaust pump the liquid is sucked up
above the mark {( The stop-cock is closed and the exhaust pump is
removed. The stop-cock is again opened. The liquid is allowed to flow
through the capillary tube.

Fig. 2.5
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The time (£,) taken by the liquid to fall from the mark A" to the
mark L iy noted, The evpe

fiment is then repeated with the second liguid
and the time (1) taken by it o f;
Theory

all from X to L is noted,
dletny and n, e the coeflic

P2 the densities of the two Hquids re

Between X and L be V! Then,

the rate of flow of the

tents of viscosity and M oand
spectively. Let the volume of liquid

first liquid = V= v/

(D
and the rate of flow of the second liquid = v, = vy, ()
x. P .a' x. P
Now, n = ! R 2 =
No N SV 1 wnd 1y, SVl
) ’ »
or m = l—:. X L‘« «(3)
o VOR
But the pressure P s Proportional tQ_the density of the liquid used
P=hpyg) ’ . )
2l
Hence, L‘ = \\_, ()
Pyopy
St Vi g \
Also, dividing (2) by (1), \7* i (5
1 N
Hence,

M hep ~ ©
M hopy -

From equation (). v, /1, can be calculated.

2.7. Poiseuille’s method fo
of a liquid. [V
The given liqui

t determining coefficie
ariable pressure head ]

nt of viscosity t
d is poured into

N

a graduated burette, The o
tube is fixed as shown in figu

2.6). The ¢lip is opened tfully. The
liquid is allowed to flow  slowly
through the capillary tube. When the
liquid-level in the burette crosses the
zero marking, a stop clock is started.
The readings of the stop clock are
noted when the liquid-level crosses the
10 cc! 20cc, 30cc. efc., markings. The
vertical height & between the capillary
tube and midpoints of the range
0-10cc, - 10-20cc, 20-30cc erc., are
measured.

—r
pillary
re (Fig.

Fig. 26

1
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i cured. The radius a of
s capillary tube (1) is measuted. The ra
The leapth ot the capillany

sope. The
[ uy o} womicroscope.
pillary tube is measated using uu‘nlul) }Im.;t‘l"(v.\ AppRraILE, Thé
of Aary e ‘ ‘
i i ctermined using
i > uid poas determ
density of the lig et
readings are tabulated as follows o . )
d Tone of
v e Volume Mean "
Wil Stop Rurette ) - y
,"‘““1“‘ o ‘IL reading of liqud /'rr\\llm / X v
) R Cl s )
Reading i nange flowing hew L
o readding P : 5 »
secondy m o
-y
0 4 - )
o ) )
10 0w 10 o wx10° 14 S
20 ) 10 1o 20ce a0 VS —
‘l‘ ' 20 o oee | ' . =

Mean b 17V

i ~d using the formula,
The coefticient of viscosity is calculated using

wpga' (o ] f i
81 Vv

2 il < of length 0.2
) \\\'uh'r flows through a horizontal tube of leng

n =

‘ Y’ of liquid issues
l 42 minutes SO04X 10 " m" of lig
the liquid 0.2 metres high. In L2 minutes ¢

fici Cviscosity of water. (The
from the tube. Calculate the coefficient of viscosity of 4

] g A o .
density of water = 1000kgm™ and g = 9.8 my ™)

1 4304.6 AN
N ,_Tpea
From Poiseuille’s formula, V = T\Iﬁ 3
=2 2 1 e 1O
Here, p = hop g = 02X 1000X98Nm ™ a = 8.1x 107 m . (<l i
O -
8.64x 107 = 12x10%mYy = ?
I=0.'_’m.\'=w« 12x1 M

44 \
mp.at (314 (02X 1000x9.8) (8.1 x 107
n = =

Now, 8V.1 $(1.2x 1079 0.2

_ = L3S x 107 Nsm™? ‘ (5
J:‘mmgl_é? A vessel of cross-section ().()().‘nx‘. has at ;'h‘i
Iu)Hnn;Thn;‘i:nnml capillary tube of length ().lr.u and m:vrml! r.a.: m,\.
0.0005m. It is initially filled with water upto a height of 0.2m ulm): (I.u.
capillary tube. Find the time taken by the \'u;\*.n'l riv‘ empty one-half of its
contents, given the viscosity of water = 10~ Nymi™.

According to Poiseuille’s formula,

Qb
0 \‘3.»

\
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outofatubepersecond [ ~ T gy

Let A be the area of cross-section of the vessel and / the height of
water above the capillary tube. Then, p = hpg. Suppose in a small time
dt lh.c level of water in the vessel falls by dh. Then, volume of swater
flowing out in time dr = A dh.

Rate of flow of water = — A dh/dr ..(2)
4
From (1) and (2), --Aﬂ = M
dt 8n!
or dt = _-ﬁﬂu‘xﬂ
npga' h
8 An! by O
=T Tllog h d
T pga [ 8 ]h, 8} //
8An! 1 L
7 pga’ e hy
Here, A = 0.002m%n = 10> Nsm 2,/ = 0.1m; p = 1000 kg m™
g =9.8ms> a = 0.0005m;k, = 0.2m and h, = 0.Im.

Volume of liquid ﬂnwing} v n pa*
=V= (1)

Integrating, ¢

: _ _8x0.002x107x0.1
7 x 1000 x 9.8 (0.0005)*

Example 3 : Calculate the mass of water flowing in 10 minutes
through a tube 0.00Im diameter and 0.4m long if there is a constant
pressure head of 0.2m of water. The coefficient of viscosity of water is
0.00082 Nsni>.

. 4
Massofwatcrﬂowmg} =M =Vxixp = Mp

log,2 = 576.2s.

in 10 minutes 8nl
hpg = 0.2x1000x 9.8 = 1960Nm™% a = 0.0005m.

Here, p=
10x60 = 600s; N = 0.00082Nsm™ and [ = 0.4 m.

]

_ mx 1960 x (0.0005)* x 600 _
M = 8 % 0.00082 X 04 x 1000 = 0.08795 kg
Example 4 : Calculate the maximum velocity with which water of
coefficient of viscosity 0.001 Nsm™2 flows through a tube of radius 6 x 10 “m
without turbulence being produced. Reynolds number is 1000. Find the rate
of flow of water through the tube at this velocity and the pressure head
required to maintain it if the length of the tube is 0.2m.

!

TR “qg B e e = |
g ¢ ) 59

I

Viscosity
M = 1.667ms™

n _
= Tooox6x 107

Critical velocity = 9, = =
Rate of flow of water through the tube

-4 2
/ = Areax Velocity = 1. 2x 0, = ®(6x107) 1.667

-

1.884 % 107 m*/sec.

]

4 1.V
V__np.a“z/nlxpg.a or h = 2 3
T 8n.! 8n.! npg-a

-6
8 x0.001 x0.2x(1.884x107) _ 4 7559m.

—4\4
7% 1000x 9.8 % (6% 107)
ow
Example 5 : Assuming the Poiseuille’s fornm{n fa.r the ra:;ii_lf f; gl
of liquid through a capillary, show that if two capllla.nes of radi f!ﬂaw
a, having lengths I, and I, respectively are set in series, the rate ©)

T ! 1 ,
. /A 2
L Ve P2k =2
is given by V = [ ;: 1124

h =

1
where p is the pressure difference

of viscosity. Also show that

across the arrangement and M is coefficient e
a 2
. /
illari i = =k
with the same two capillaries connected in parallel, V s 1 L

Consider the arrangement consisting of two capillaries of radii a,
and a, having lengths /; and b respectively joined in series. Let p; and
p; be the pressures at the extreme ends and let p, be the pressure at the

tion. Then, pressure difference across the ends of the first

jun
b s the ends of the second

tube = p, —p, and pressure difference acros

tube = p,—p3.
Since there is no accumulation of the liquid at the junction of the

two capillaries, the rate of flow (V) through the whole arrangement must

be the same.

V_n(pl-pz)a'f:ﬂ(llz—ﬂa)a;
T Bn. 81.1,
8nVv.! 8nv.lL
or P1—P2 = —4' (1) and p—p3 = ——— ...(2)
n.a) n.a, \
: snv| L L
Adding (1) and (2), p;—p;3 = = <t 7
’ a @

Now, p, —py = pressure difference across the composite tube = p
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St
Hence p = LB + L
T al a
ep oy 1"
or pe ol ==
8 (IT ug

; .\\l)cll thc.l\m capillary tubes are connected in parallel, the volume
of liquid flowing per second through them is given by

3 1 4 4
V=Vev,=SPG Rpa Tp g a
80l 8nh, - 8n |4 o

Example 6 : Two tubes A and B of lengths Im and 0.5 m have radii

107 2 ~ y i iquid i Y

. 1 and 2x 10" m respectively.If a liquid is passing through the two
c.r-. lfllit'rmg A at a pressure of 0.8m of mercury and leaving B at a

Z;e;slx;lc of 0.76 m of mercury, find the pressure at the junction of A
d B. .

For a liquid which is incompressible, the volume of the liquid that
flows ouf per second (V) will be same in A and B.

np, .a _ Tp,.d;

8n.l " 8m.L,
where p, is the pressure difference between the two ends of the tube A
of length {, and radius a; and p, is the pressure difference between the

two ends of the tube B of length /;, and radius a,.

4
P (%) &
P2 a b
Let the pressure at the junction of A and B be x. Then,

pressure difference between the two ends of tube A=p;=(0.8-x);
pressure difference between the two ends of tube E

V=

Hence,

=p, =x-0.76
a _2x107 L
SSe—— =i 2 - =—=
a, 10~ and 7 =35~ 2
0.8—x _ ~ab _ _
2-076 = 2"x2 =32 or 32x-32x0.76 = 0.8 -x
or 32x-24.32 = 0.8—x or 33x = 25.12.

x = 0.7612 m of mercury.

Viscosity
MOTION IN A VISCOUS MEDIUM

2.8. Terminal Velocity and Stokes’ Formula. ) o
Let us consider an infinite column of a highly viscous liquid like

castor oil contained in a tall jar. If a ste.cl ball is dropp'ed 'lmo]theulllltul‘d];
it begins to move down with acceleration under gra-vuauon.a P Th
cous forces in the liquid. These

its motion in the liquid is opposed by Vis . .

:/iscous forces incr]cusc as rl)f[l)c velocity of the _ball mcfasl::“};:::(l,glez'
velocity will be attained when the apparent wEREht O;l This stage, the
equal to the retarding viscous forces acting on it. At his S s r;wve
resultant force on the ball is zero. Therefore the ball continue

5 . o d
down with the same velocity thereafter. This uniform velocity 1s calle
the terminal velocity. . .
_~Stokes’ Formula : The viscous force F .CXPC“C”C‘;‘-‘ ‘t’)y”a (Zf‘)"i:i
sphere must depend on (i) the terminal Yc!ocny v ?f l.i 2(‘ ) of the
radius () of the ball and (iii) the coefficient Of VISC?SI y (M )
liquid. We can write F = kv 7’ n° where k is a dxzmenswnless const.an 5

=2, = = = L]
The dimensions of these quantities are F = MLT 50 = LT_ I
=M1, (k is a number ; it has no dimensions).
MLT? = LTy L (ML T7)
MLT'Z =t M'Lu+lr—(' Te-c
Equating the powers of M, L and T on either side,
c=1;, a+b-c=1and —a-c = -2.
Solving,a=l3;b=1and c = 1. . F=kvrm.
Stokes experimentally found the value of k to be 6 T.
F=6nvrm.
Expression for terminal velocity. Let p be the density of the ball
and p’ the density of the liquid. Then,

the weight of the ball = %n 7 pg.

_ The weight of the displaced liquid|_ in A p'g
or the upthruston the ball 3

The apparent weight| _ 4 __4 , =_‘1 S,
of the ball = JnPpg-3nrpe =377 (p=p)g:

When the ball attains its terminal velocity v,
the apparent weight of the ball = viscous force F.

prorn =357 (p-ps
S
or v=%%(p-p’)g./.
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Assumptions made by Stokes while deriving the formula:

(1) The medium through which the body falls is infinite in extent,
(2) The moving body s perfectly rigid and smooth

() There is no slip between the moving body and the medium,

(4) There are no eddy currents o1 waves set up in the medium due

to the 1aotion of the body through it. In other words,"the bady is moving
Jery slowly through it.

2.9. Stokes® method for the cocefficient of viscosity of a viscous liquid
- Stokes” method iy suitable for highly
AT viscous liquids hike castor oil and glycerine,
The experimental liquid is taken in a tall and
wide jar (Fig. 2.7 ). Four or five marks A B,
C. D... are drawn on the outside of the jar at
intervals of S cm. A steel ball s gently
dropped centrally into the Jar. Thestimes taken
by the ball to move through the distances AB,
BC, CD. ... are noted. When the times for two
consccutive transits arc equal, the ball has
reached terminal velocity. Now another ball is
gently dropped into the jar. When the ball just
reaches a mark below the terminal stage, the
. time (1 ) taken by the ball to move through a
Fig. 2.7 definite distance (x) is noted.
<. Terminal velocity = v = x/1.

The experiment is repeated for varying distances and the mean
value of v is found.

The radius of the ball is measured accurately with a screw gauge.
The density of the ball p and the density of the liquid p’ are found by
the principle of Archimedes. 7 is calculated using the formula

2
n= %% (P-p)g
Example 1 : Assuming that when a spherical body moves in a viscous fluid
under the action of a force F, the resultant force is given by ma=F -6 rnv,
calculate the terminal velocity of a rain drop of diameter 10 m. Density of air
' relative 10 water is 1.3% 107 ;1= 1.81x 1075 N sm™2

When the body attains the terminal velocity, the acceleration of the
body is zero. The body continues moving in the direction of the force
with a constant velocity (v).

_27(p-p)g .

v »
n

['-}

. Mapdes ™ - g @ 0
‘- -y -

Viscosity - - d

—— .

-3 1
ya—=5x10""m

Here 5
= [000kgm
. ; » Density ©
o'=Density of air =Density of air relative 1G wm:-r and g =9.8 ms ™.
(13 % 10 > 1000 = 1 3kgm = 181 > 10 o
2 (52107 (100 -1HIR 30 ms!
vEy T sixio”

p = Density of water ¢ water

wo drops of wd r o the yame size are /ﬂ“l"x
"“‘"'l’l( 2 T iro, )/ re / .

) : J/ 0.1 ms If the two P
[ he t drops

.2
the new terminal velocity’
| drops. Let R be the radius

through air with terminal velocities L b

combine to form a single drop. what m' ,
Let r be the radius of cach of the origind

of the combined drop. Then

R = 2x53x” or R = 27

i - spectively.
Let v and v, be the velocities of old and new drops, respe

4 1 ’
: ’ ==nR -p e
6nnrv=%nr‘(p—p)gnnd 6rnRy; =37 (p

1
3
Dividing, v/Rv; = r'/R' = 5.

v 2r_ 2 - o
or E

v, = 2% v =2"x01 = 0.159ms”’

l"llxample 3 : Determine the radius of the drop of n;atel_-lfallmg
through air, if the terminal velocity of the drop is l.:'.’ x 10" ms ™. -

Coefficient of viscosity for air = 18x 10 Ns f"—- and density of air
= 1.21kgm™, -

We have, from Stokes formula,

N

2 ,
terminal velocity of the drop = v = 5 (p-pP)eg ...()

n

Here, v = 1.2x 102 ms™",n = 18X 10N sm™
: 3.

p = density of water drop = 1000kgm™;

,

p’ = density of air = 1.21 kg m>g=98 ms2r =72

N 2_ _ 9 _ 91]1')
From -7 = 2(o—p02 @ "~ V2(p-p)z

_ ,\/9 (18X 1079 (1.2x 107

=9968x10°m
2(1000—1.21)9.8



Diffusion

4.1. Introduction

A strong copper sulphate solution is placed at the bot.tom qf a tall
jar. The rest of the jar is filled with water, without disturbing the
solution. It is found that the coloured solution gradually moves upwards.
After a long time, the entire solution is uniformly coloured.

The process by which the molecules of a solute spontaneously move
Jrom regions of greater concentration to regions of lower concentration
in a solution, unaided by external pressure and against the force of
gravity, is called diffusion.

Graham’s laws of diffusion in liquids:

ke 1. The same solute diffuses at different rates through different
solvents.
T 2. Different solutes diffuse at different rates through the same
solvent.
3. When the temperature increases, the rate of diffusion also
increases.

4. Crystalloids diffuse faster than colloids.
5. For a given solution, the rate of diffusion is directly
proportional to its concentration.
4.2. Fick’s laws of diffusion
Fick stated the law of diffusion in analogy with the law of
conduction of heat through a solid.

Consider two parallel layers in a solution at rest. Then, the mass of
the substance moving across the layers by diffusion is —
(i) directly proportional to the area of the layers

(if) directly proportional to the difference in concentration
between the layers

(iif) inversely proportional to the distance between the layers
(iv) directly proportional to the time.

Let A be the area of the layers, and d the distance between them.
Let the concentration at these layers be Cy and C,. Then the mass (m)
of the substance diffusing in  seconds is
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A(CI-Cy)t
=K |d 2)
K is a constant known as coefficient of diffusion .or dijfu.riviry of the
solution . ( C; - C,) /d is called concentration gradient.
IfA=1(C-C)d=1andt’= i,then m = K.
Therefore the coefficient of diffusion can be defined as the mqgs; of

substance diffusing per second across unit area of cross-section, where
the concentration gradient is unity.

- t
m,ic_ldﬁ)_o,m

Unit of K is kg sec”! m™ per unit concentration gradient.

Its dimensions are [K]= [L2 Tl 1.

Analogy with Heat Conduction : Heat conduction in solids and
diffusion is liquids are similar phenomena.

The quantity of heat (Q) flowing in ¢ seconds across two layers of 5
conductor of area A, separated by a distance d, when the temperatures a;
these layers are T, and T, is given by

A(T,-Ty)t
Q=% P
where A is the coefficient of thermal conductivity.

Fick’s law states that the mass m of a substance diffusing in ¢
seconds across two layers of a solvent of area A, separated by a distance
d, when the concentrations of the substance at these layers are C, and
C,, is given by

A(C -Cy)t
K d

where K is the coefficient of diffusion of the substance. Thus Fick's law
of diffusion is similar to the law of heat conduction.

m =

Mass of the diffusing substance plays the role of “‘quantity of heat™
Concentration gradient ( C; - C,) /d plays the role of temperature
gradient (T, - T,)/d.

Cocfficient of diffusion plays the role of coefficient of thermal
conductivity.

4.3. Expcrimental determination of Coefficient of Diffusion

[Diffusivity]

A strong solution of the given solute in water is placed at the
bottom of a tall jar [Fig. 4.1]. Water is poured gently above the solution
without disturbing the solution. Water is aliowed to flow at the top
slowly through the inlet L and outlet N. The stream of the solvent
through the tube, carries with 1t the salt arriving at the opening M. After
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a time, steady conditions will be
obtained, when the amount of the salt
arriving at M becomes constaat.

The solution passing out at N is . "
collected for a known time' t. The ;
mass (m) of the salt present is found
out. By taking out a small amount of
solution out of the taps P and Q, the
concentrations C, and C, are found
out. Let x be the distance between.the
taps. Then, concentration gradlf:n( Concentrated
= (C;-Cy)/x. The area of opening Solution
M gives the area of the layer across
which diffusion into M has taken
place. K is calculated using the

formula,
-G
m=K.A T t

4.4.- Graham’s Law of Diffusion of Gases

The rate of diffusion of a gas is inversely proportional io the square
root of its density.

The law can be deduced from kinetic theory of gases. Lel. two gases
diffuse one into the other, till a steady state of diffusion is reached.
Under this condition, their pressures and temperatures arc_ffquul. Let
p, and p, be the densities and C, and G, the r.m.s. velocities of the
molecules of the two gases. Then

1 2 _ | 2
I’=§plcl :af(plq

£y P2

G P1
Now rate of diffusion of a gas is dircctly proportional to the mean
velocity- of molecules
R, ¢ [
k—l B C_: B Py
The rates of diffusion of two gases are inversely proportional to the
square roots of their densities.

or Re< 1/\p.
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On account of their higher molecular velocities, the gases diffuse 4
a much quicker rate than the liquids.

4.5. Effusion of Gases |

Effusion is the process whereby a ga?' e'scapes into vacuum, from g
thin walled vessel through a small hole in it. Graham .r!loyx'f’d that the
rate of effusion varies directly as the square root of the difference of
pressu-re on the two sides of the hole, and inversely as the square rog;
of its density.

pressure difference
density of the gas

Velocity of effusion o< ‘\/

In a mixture of gases, each gas effuses out in proportion to its
partial pressure. So the proportion of the gases remains unaltered, even

after effusion. Thus there is no separation of a mixture of gases into its
constituents .

4.6. Transpiration

If the hole in a plate is not too fine, and the thickness of the plate
is greater than the diameter of the hole, the process of escape of the gas

through it is called ‘transpiration’. Here, the flow of the gas.is
controlled by viscosity alone.

EXERCISE 1V

1. Explain what you understand by diffusiun.

State Fick's laws of diffusion and explain their analogy to laws of heat
conduction. -

3. Define ‘diffusivity’. Explain how the diffusivity of a salt can be
determined experimentally.

4. Write notes on : ‘effusion’ and ‘transpiration’
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